Design and Construction of Creekside Town Center Bridges

Peter A. Giessel, P.E. Reid Middleton, Inc.

Reid Middleton

- Based in Everett, Washington with an office in Anchorage, AK
- Approx. 100 employees total
- Anchorage Office
 - Structural Concentration
 - Four Professional Engineers, Two EITs and Two support staff

Creekside Town Center Bridges

- Community revitalization/renovation type of project
- Adjacent to Begich Middle School
- Engineer's Estimate for Bridge work: \$1,378,025.00 \$320/ft²
- Bids ranged from: \$1,432,301.50 to \$1,616,630.00 \$330 to \$375/ft²
- Winning Bid: \$1,445,606.70 \$335/ft²

Creekside Town Center Location

Design Challenges

- Geometry Challenges
 - Eastbound and Westbound Vertical Profiles different
 - Horizontally Curved
 - Pedestrian Undercrossing on the Northwest side

EASTBOUND BRIDGE PROFILE GRADE

Design Challenges

- Early (prior to 2007) concept
- Final Design

- Design Code
 - AASHTO 15th and 16th were available in our library
 - There was a general lack of preference expressed by the owners

Foundation type

Via e-mail dated July 16, 2007:

"Spread Footings at the Bridge: I spoke with ...our GeoTech department and the recommendation for spread footings were based on the dense gravel at the site. No deep borings were done because of this finding. If [deep foundations] are used.... deep borings will be required. I do not believe our time line allows for this."

- Seismic Zone 4
- Irregular Bridge
- Frozen ground case increases shear demand per AASHTO LRFD Article 3.10.9.4.3.a
- As per the Alaska DOT "Seismic Pier Design for Steel Pipe Pile Extensions with Concrete Cap Beam"

3.10.9.4.3a General

Where inelastic hinging is invoked as a basis for seismic design, the force effects resulting from plastic hinging at the top and/or bottom of the column shall be calculated after the preliminary design of the columns has been completed utilizing the modified design forces specified in Article 3.10.9.4.2 as the seismic loads. The consequential forces resulting from plastic binging shall

- Frozen ground case increases shear demand per AASHTO LRFD Article 3.10.9.4.3.a
- As per the Alaska DOT "Seismic Pier Design for Steel Pipe Pile Extensions with Concrete Cap Beam"

• Electrical Concerns

Monday, 2009, September 21

Architectural Concerns

- Architectural Concerns
 - Pedestrian Railing

Original Site

Driving Piles

- Boulder encountered while driving affecting two piles
- 24" diameter casing was installed to the boulder
- Bolder was drilled to allow 18" diameter pile installation
- Annulus between the 18" pile and the casing was filled with a Bentonite Slurry.

Casting the last Precast Girders at AggPro — August 5, 2008

Piles Driven, Concrete cores cast, MSE Wall

August 13, 2008

Site Condition in August 13, 2008

Forming up Piers and Abutment - August 18, 2008

Pier 2 Formwork

August 18, 2008

Temporary Bridge

August 18, 2008

Forming Abutment 1, MSE Coping

August 26, 2008

Profile

August 26, 2008

Dip in Coping

August 26, 2008

September 8, 2008 — Girders set Final Girder Cast, August 5, 2008 less than 5 weeks prior

Shear Tab Detail — Welded shear tab and shear key to be grouted September 8, 2008

Elevation of Abutment 1

September 9, 2008

Abutment 1 Extension

September 9, 2009

Deck Bulb-T Damaged

September 10, 2008

Pier Diaphragms Cast

September 16, 2008

Decked Bulb-T Girder Repair September 16, 2008

Blockouts for Railing Anchors

September 16, 2008

Casting South
Diaphragm

September 19, 2008

Installing Forgotten Railing Base Plates

September 19, 2008

Span 1 Cast, Forming Approach Slab

September 25, 2008

Span 1 Slope Issue

September 26, 2008

Elevation of Abutment 1

September 9, 2008

South Approach Slab Railing Issue / Light Post attached to MSE Wall September 27, 2008

Eastmost Girder Pedestrian Railing Issue

September 25, 2008

Profile

September 27, 2008

South Approach Slab

September 30, 2008

Casting remaining curb, Formwork removed on Span 1, Utiliducts installed — October 2, 2008

Installing Waterproof Membrane

October 8, 2008

Heaters for warming up the deck

October 8, 2008

Installing Waterproof Membrane October 8, 2008

Heating the Curb to extend the height

October 23, 2008

Railposts Installed

November 10, 2008

Profile

April 14, 2008

Final Walkthrough

June 24, 2009

Final Walkthrough June 24, 2009

Final Walkthrough June 24, 2009

Final Walkthrough

June 24, 2009

Questions?